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A family of four weakly coupled electronically nonadiabatic bimolecular model photochemical
systems is presented. Fully converged quantum mechanical calculations with up to 25269 basis
functions were performed for full-dimensional atom—diatom collisions to determine the accurate
scattering dynamics for each of the four systems. The quantum mechanical probabilities for
electronically nonadiabatic reaction and for nonreactive electronic deexcitation vary frohtd.0

1075, Tully’s fewest-switche§TFS) semiclassical trajectory surface-hopping metfaido called
molecular dynamics with quantum transitions or MDQ$ tested against the accurate quantal
results. The nonadiabatic reaction and nonreactive deexcitation events are found to be highly
classically forbidden for these systems, which were specifically designed to model classically
forbidden electronic transitiongalso called frustrated hopsThe TFS method is shown to
systematically overestimate the nonadiabatic transition probabilities due to the high occurrence of
frustrated hops. In order to better understand this problem and learn how to best minimize the errors,
we test several variants of the TFS method on the four new weakly coupled systems and also on a
set of three more strongly coupled model systems that have been presented previously. The methods
tested here differ from one another in their treatment of the classical trajectory during and after a
frustrated hopping event. During the hopping event we find that using a rotated hopping vector
results in the best agreement of semiclassical and quantal results for the nonadiabatic transition
probabilities. After the hopping event, we find that ignoring frustrated hops instead of reversing the
momentum along the nonadiabatic coupling vector results in the best agreement with the accurate
quantum results for the final vibrational and rotational moments. We also test the use of
symmetrized probabilities in the equations for the TFS hopping probabilities. These methods
systematically lead to increased error for systems with weakly coupled electronic states unless the
hopping probabilities are symmetrized according to the electronic state population200©
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I. INTRODUCTION method and specifically on Tully’s fewest-switch€BFS)

algorithn?3° for surface hopping(TFS is also called mo-

Semiclassical methods for calculating the probabilitie . . "
. . . . ecular dynamics with quantum transitions or MDQBur-
of electronically nonadiabatic events have a long history, L ., . .
face hopping is amd hocaddition to classical mechanics in

and a variety of multistate approximations have been devel-"" i T ) )
oped and reviewedi:® An important recent development is which trajectories instantaneously switch electronic states,

the use of converged quantum mechanical dynamics calcul&€- the potential energy function that determines the nuclear
tions for full-dimensional atom—molecule collisions to test Motion is discontinuous. The TFS algorithm is an affordable

the semiclassical theoridsl? and often accurate methbd* despite the apparent short-

One may classify electronically nonadiabatic systems irffoming of using sudden surface switchigsps to describe
various ways, the simplest of which recognizes stronglythe nonadiabatic flow of probability in electronic state space.
coupled and weakly coupled systems. The former are epito- There are two important decisions that must be made
mized by surface intersections and localized, narrowlywhen implementing surface hopping) When a surface hop
avoided crossings, the so-called Landau—Zener—Tellelo a different electronic state is called for and is classically
caset?*18and the latter are epitomized by wide regions ofallowed, how should the kinetic energy be adjusted so as to
coupling, often of weakly coupled but nearly parallel poten-conserve total energy an@) what is the best way to treat
tial functions, the so-called Rosen—Zener—Demkovhopping attempts that are classically forbidden? The first
casel>*1%?°The present article is primarily concerned with question has a satisfactory answer. The direction along
developing and testing semiclassical methods for atom-which the nuclear momentum is adjusted is represented by a
molecule collisions in the latter, less studied case. In particugnit vector called the hopping vector, and it has been
lar we focus on the trajectory surface hopping® (TSH)  showr!! that using the direction of the nonadiabatic cou-
pling vector(instead of the gradient of the electronic energy
dElectronic mail: truhlar@umn.edu gap, for exampleas the hopping vector and adjusting the
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nuclear momentum such that total energy is conserved régem. Using the TFS algorithm we find for the model systems
sults in the best agreement with quantum mechanical calcistudied here that hopping to the ground state is rare, but once
lations. This procedure has also been justifiedthe system is in the ground state, a large percen2g&—
theoretically?>2837 80%) of trajectories experience at least one frustrated hop-
Our present study will concentrate on the second quesping attempt. This results in a breakdown of the self-
tion. Hopping attempts that are classically forbidden areconsistency of the TFS algorithm, i.e., the fraction of
called frustrated hops, and their treatment has attracted sontk@jectories in each state does not correspond to the distribu-
attention recently?1434-36383%t a satisfactory procedure tion demanded by the fewest-switches algorithm.
has not yet been obtained. It has been suggested that frus- Due to the high percentage of trajectories affected by
trated hops should be ignored, and this method has bedrustrated hops and the low probability of multiple hopping
applied with some succed$lt has also been argutf>*® trajectories, the new YRH model systems presented here pro-
that when a trajectory experiences a frustrated hop, theide good test cases for studying the treatment of frustrated
nuclear momentum should be reversed along the hoppingops. We use the family of YRH systems along with a pre-
vector, as if the trajectory experiences a repulsive wall norviously describet set of more strongly coupled model sys-
mal to the hopping vector as it attempts and fails to hop to 4&ms, called MXH systems, to explore several variants of the
higher-energy electronic state. In past wofRs!®?” our ~ TFS method which differ in their treatment of frustrated hop-
group has generally followed the procedure used by Blai®ing. Section Il presents the model YRH systems, and Sec.
and Truhlaf®’ this involves a combination of these two ap- !ll presents the accurate quantum mechanical dynamics cal-
proaches, i.e., energetically forbidden frustrated hops are igculations for these systems. Section IV discusses the semi-
nored while energetically allowed but momentum forbiddenclassical algorithms, and Secs. V and VI present and discuss
frustrated hops are reflected. the results of the semiclassical methods applied to the model
It has been notéd that one may distinguish two possible YRH and MXH systems.
reasons for the occurrence of classically forbidden hopping
attempts. The first _pos&_ble reason is that the trajectory SUl \VIODEL POTENTIAL ENERGY MATRICES
face hopplng glgorlthm. is somehow inadequate and shoql ND SCATTERING CONDITIONS
not be predicting transitions where they cannot occur. This
argument is strengthened by studies that show surface hop- In order to design a simple and systematic set of test
ping methods to be more accurate when frustrated hops ae@ses for studying the treatment of surface hops without in-
ignored®* Motivated by this reasoning, a variant of the TFS terference from competing effects, a family of model three-
method called the MDQT method has recently been body potential energy matricéBEMS with weakly coupled
proposedP 8 that eliminates hopping attempts in classically electronic states was created. Each PEM models the nonadia-
forbidden regions by using a symmetrized velocity in thebatic scattering process of an electronically excited model Y
equations for the electronic state populations. The secondtom interacting with a diatomic RH molecule initially in
possible reason for frustrated hops is that the trajectorgome discrete vibrational and rotational quantum statg) (

shouldhop to the energetically forbidden state, but classical Y+RH(",j") (R13
trajectories are limited by the conservation of total energy, Y*+RH(v,j)— , ’.,
whereas quantum mechanical particles can borrow energy REYH(]), (R1b

for a finite time according to the uncertainty principle. This where the asterisk indicates electronic excitation, and the
idea suggests that the method for adjusting the nuclear kiprimes on the quantum numbers indicate that these quantities
netic energy during a hopping attempt is somehow deficientare not conserved. There is some probabifty that the
Our group has recently proposed a method for redistributingystem will react to form the YH diatomic produ®1b) and
the nuclear kinetic energy in order to allow some classicallysome probabilityP, that the system will quench, typically
forbidden hopg?'* although this method generally led to accompanied by vibrational and rotational excitation of the
increased semiclassical errors for the cases to which it waRH diatom(R1a. The sum of these probabilities is the total
applied. nonadiabatic probabilityP?y for the system to undergo an

In a recent work® two semiclassical methods were electronic transition to the ground state during the scattering
tested against accurate quantum mechanical calculations ferent.
the weakly coupled Brkisystem, which is a reactive Rosen— The electronic excitation energy of the Y atom is taken
Zener—Demkov case. The results show that despite difficultas 0.36 eV, and the equilibrium bond energies of the RH and
in achieving numerical convergence, the TFS method is mor&H molecules are 3.9 and 4.3 eV, respectively. The zero
accurate than the semiclassical Ehrenfest méttfddor this  point energies of RH and YH are 0.18 and 0.19 eV, respec-
case. In the present work we test semiclassical methods ontizely. The mass combination for all calculations was chosen
family of four weakly coupled three-atom systems called theto be 10 and 6 amu for the Y and R atoms, respectively. The
YRH systems with features qualitatively similar to the BrH H atom has the mass of hydrogen, i.e., 1.007 83 amu. This
system. The family of systems has members with quanturmass combination provides an interesting and challenging
mechanical nonadiabatic transition probabilities varyingtest case for semiclassical methods. The system is modeled
from ~10" ! to ~107°, and it was specifically designed to in the diabatic representation and has qualitative features of
provide a more systematic test of nonadiabatic semiclassic#he Rosen—Zener—Demkov typé!®?i.e., the diagonal di-
trajectory methods than the previously described Bsks-  abatic potential energy surfacds, andU,, never cross and
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FIG. 2. Contour plots of the adiabatic energies and the nonadiabatic cou-
pling vector, plotted as functions of the translational Jacobi coordifate

are nearly parallel in the entrance valley. The diabatic coudnd the diatomic Jacobi coordinasewith the Jacobi anglg =120°. (a
’ Lower-energy adiabatic potential energy surfa@®. Higher-energy adia-

pling Uy, is |OcaliZ_Ed in_ the intera(_:tion region. The energy patic potential energy surfac&) Magnitude of the nonadiabatic coupling
gap between the diabatic surfaces is roughly equal to 0.36 eVéctor|d|. (d) Magnitude of the component afthat lies in the direction of
throughout the Strong interaction region_ Details of the func_the diatomic Jacobi coordinatée) Magnitude of the component af that

tional forms and the parameters used in the analytic I,epr(%i_es in the direction of the translational Jacobi coordinéteMagnitude of

. . . he component ofl that lies in the direction of the Jacobi angle. For panels
sentation of the family of YRH surfaces are available as(g) and b), the lowest energy contours are at 0.2 and 0.8 eV, respectively,
supporting informatior}? and the contour spacing is 0.2 eV. For pan@)s (d), and(f) the contour
Each member of the family of YRH matrices differs spacing is 10%a,*. For panel(e) the contour spacing is I6a, *.
from the others only in the value of the maximum diabatic
couplingU75>. Four potential matrices with values bffs*
=0.20, 0.10, 0.03, and 0.01 eV are discussed in this papenitude of the vectorS that points from Y to the center-of-
The PEMs in the series will be referred to individually as mass of RH,s is the magnitude of the vectarthat points
YRH(UT5YeV), where U¥eV is UTY in eV, e.g., from R to H, andy is the angle betwee8 ands.
YRH(0.20. A plot of the diabatic matrix element$;;, U, Initial scattering conditions may be labeled by the short-
and U,, along an approximate reaction path @f, in the  hand E/eV,j) whereE/eV is the total energy in eV ands
internuclear bond distance coordinate system is given fothe initial rotational quantum number; in all cases the initial
YRH(0.10 in Fig. 1. Also shown in Fig. 1 are the two dif- electronic quantum number is @vhich corresponds to the
ferent total scattering energi€$.10 and 1.02 eYused for  excited electronic statethe initial vibrational quantum num-
the calculations reported in this paper and the energies dfer is 0, and the total angular momentum is 0. We consider
some asymptotic rovibrational states. three cases for the YRH system4:.10, 0O, (1.10, 6, and
Adiabatic potential energy surfaces were obtained by di{1.02, 0. Note that the initial total internal energy for a col-
agonalizing the diabatic PEM. In the adiabatic representatiotision of Y* with RH(»=0,j=0) is 0.94 eV and that for
the scalar product of the velocity and the nonadiabatic couRH(»=0,j=6) is 1.02 eV.
pling vectord (due to the nuclear linear momentuaouples Although this paper focuses on the model YRH systems,
the nuclear and electronic degrees of freeddfiUsing the  we also consider the previously describedet of MXH
Hellman—Feynman theorem, we can calculht@ithout ap- model PEMs. These systems are more strongly coupl-
proximation from the diabatic matrix elements and theired than the YRH systems; the quantum mechanical
gradients® Figure 2 contains contour plots of the upper andnonadiabatic transition probabilities vary from 0.15 to 0.49.
lower adiabatic surfaces and the magnitude.ohlso shown For these systems we consider themy(,my,my)
are the magnitudes of the three componentd,afxpressed =(6.04695,2.01565,1.007 83 amu) mass combination and
in the reactant-Jacobi coordinate system, wiSissthe mag- the (1.10, O set of initial conditions. We consider all three
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sets of MXH surfaces which were previouSiyfabeled SB, tional and rotational quantum numbers and the reaction and
SL, and WL. See Ref. 15 for a complete description of thequenching probabilities are converged to better than 1%.

MXH surfaces. Quantum mechanical observables often exhibit an oscil-

latory structure as functions of scattering energy. In contrast,
IIl. QUANTUM DYNAMICS FOR THE MODEL YRH semiclassical properties often do not show these oscillations,
SYSTEMS and in such cases it is most appropriate to compare them to

energy-averaged quantum results. In the present case we

Fully converged, six-dimensiondthree vibrations and hecked that th iclassical its d 4 onlv slow]
three rotations quantum mechanical scattering calculations®€ck€d that the semiclassical resulls depend only slowly on
energy. It is therefore desirable to compare the semiclassical

were performed on each of the four YRH potential energy Its obtained at a singl tter; to th
matrices using the outgoing wave variational principleresu S obtained at a single scatlering energy 1o the average

(OWVP), =% as implemented in version 18.8 of the guantum mechanical value obtained over a range of energies.
computér codé’ The OWVP is a linear algebraic variational Quantum mechanical calculations were performed at seven
energies at and around the nominal scattering enéfees!

principle*® employing both£? and non£? basis functions. 4 to obtain values that it e th
The calculations reported here employ a basis of asymptoti@verage {0 obtain values that are used to compute the errors
reported in Tables Il and Ill. In most cases, the values ob-

eigenstate functions multiplied by half-integrated Green'’s ™! . - .
functiong? for energetically open channels and by Gaussiarjfa'ned by averaging are similar to the values obtained at the

functions for energetically closed channels. A channel is de[lomlnal scattering energy.
fined as a unique set of the asymptotic quantum number,
including: the molecular arrangement, the diabatic eIectronif/' SEMICLASSICAL TRAJECTORY CALCULATIONS
guantum number, the vibrational quantum number of the di- Semiclassical trajectory surface hopping calculations
atomic molecule, and the rotational quantum number of thevere carried out using version 6.0 of th&T computer
diatomic molecule(For nonzero total angular momentuin  code® (which is a generalized version of our previotsH
one could also include the relative translational orbital angueode. For all the calculations reported in this work, the hop-
lar momenturmy”, but for J=0, we have/” equal toj, j’, or  ping vector was taken to be a unit vector in the direction of
j"”.) All of the rotational-state channels for a given vibra- the nonadiabatic coupling vector, i.e.,
tional state, electronic state, and molecular arrangement were
coupled to each other, whereas channels with different vibra- = —__ (1)
tional states, electronic states, or molecular arrangements |d|
were uncoupled when solving the finite difference problemThe initial coordinates and momenta for each trajectory in
to obtain the basis functions for the variational step. Thehe ensemble were selected as described previdt&ly.
surfaces were fully coupled during the variational step of the  The final reaction and quenching probabiliti¢2; and
calculations. See Refs. 43—46 for details. Po) were determined by counting trajectories, and the final

We define our potential energy matrices and perform oufotational and vibrational momentév’) and(j’) for reac-
guantum mechanical calculations in the diabatic representaye trajectories, an@(v”> and <j”> for quenching trajecto-
tion with zero nuclear momentum coupling. In such a modelyies) were calculated according to the energy-nonconserving
there is a one-to-one transformation between diabatic anfiistogram(ENH) analysis schem#. Vibrational and rota-
adiabatic representations, and the quantum mechanical rgonal moments were also calculated using the energy-
sults are independent of which one is chosen. nonconserving quadratic smooth sampliri} (ENQSS, and

A list of the OWVP basis set parameters can be found inhe energy-nonconserving linear smooth sampl(iEYLSS
the supporting informatioﬁz. Basis set | contains 18 934 ba- ana|ysi3 schemes. We also tested an energy-consdﬁ@g
sis functions and was used to calculate all of the observablegariant® of the three sampling schemes, i.e., ECH, ECQSS,
reported in this paper. The larger basis set, basis set Il wagnd ECLSS. The EC methods result in systematically
used to check the convergence of basis set | for thelightly lower rotational and vibrational moments and lead to
YRH(0.20 and YRHO0.01) systems at several scattering en-increased semiclassical errors. The results from the six
ergies. The number of basis functions in the convergencgnalysis schemes typically differ from each other by less
check is 25269. In these convergence checks, the state-tthan 2%. For this reason we report only one set of results,
state transition probabilities out of the*¥RH(v=0,j=0)  and we chose the ENH result, because it has a well-defined
(for E=1.10 and 1.02 eVand the Y +RH(»=0,j=6) (for  statistical uncertainty estimate.
E=1.10eV initial states are converged to better than 1% for
greater than 95% of the energetically accessible final char¥-A- Treatment of the nuclear momentum

. - o ... at a frustrated hop

nels, with the remaining state-to-state transition probabilities
(high-j’ or j” channelsconverged to better than 5%. For all During a surface hopping event, a trajectory attempts to
of the state-to-state transition probabiliti@scluding all ini-  hop from the occupied electronic state to a target electronic
tial state$, 94% of the transition probabilitigsvith an aver-  state. A hopping attempt is classically forbidden if it is not
age value of 0.01)3are converged to better then 1%, 3% of possible to adjust the nuclear momenta along the hopping
the transition probabilitiegwith an average value of 4.5 vectorh, such that total energy is conserved. One may fur-
% 10~°) are converged to better than 5%, and the remainingher divide classically forbidden hops into three categdties,
3% of the transition probabilities have an average value ohamely: energy-, angular-momentum-, and linear-
2.1x10°8. The first momentgi.e., averagesof the vibra- momentum-forbidden hops. Energy-forbidden hops occur
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when the target state has an energy greater than the totaear-momentum-frustrated hops by rotating the hopping
energy of the system. The distinction between the other tweector h within the zero angular momentum region of con-
types of frustrated hops depends on dividing the energy intdiguration space by the smallest amount that allows for
vibrational and rotational contributions. A hop is angular-hopping*? In the present work we call this the TR&; +)
momentum-forbidden when the hop is not energy-forbiddenmethod, where the “R” indicates that linear-momentum-
but the vibrational energy is less than the energy of the targdbrbidden hops are allowed using a rotated hopping vector.
state, i.e., the nuclear momentum cannot be adjusted in ariyotating the hopping vector cannot be used to allow energy-
direction such that total angular momentum is conserved. Aorbidden hops, and when an energy-forbidden hop is at-
linear-momentum-forbidden hop occurs when there is suffitempted, it is ignored.
cient energy in vibrational modes to exist on the target sur-
face, but there is insufficient energy along the hopping vector
h to allow for the energy adjustment. We note that for sys-IV.B. Symmetrized-speed and symmetrized-coupling
tems where the total angular momentdnis equal to zero, methods
there is no energy in the rotation of the system and angular-  The four variants of the TFS method discussed in the
momentum-forbidden hops cannot occur. For the calculaprevious section, TF$-,+), TFS{—,—), TFS{+,+), and
tions reported here, the orbital angular momentimissis ~ TFS<R,+), differ in their treatment of the classical trajectory
selected classically from<9/ 57 for the j=0 state and  after a hopping attempt that is generated by the TFS algo-
from 6 </ as7h for the j=6 state, and therefore the rithm turns out to be frustrated. An alternate approach is to
total angular momenturd can have values that range from modify the TFS algorithm to eliminate hopping attempts in
—3h<J<3h. The occurrence of angular-momentum- regions where hops are classically forbidden. For a trajectory
forbidden hops, however, is much less than 0.01% of thés following the pathR(t), we can write the electronic wave
total number of attempted hops, and the treatment of angulafunction for a two-state system as
Lneognoennstilérgr;%r?:]dg]c?gﬁt;:pzt:enmse allowedhops will not W (1) = c4() i R+ Cot) ol R(D], @
Several variants of the TFS method which differ in their where ¢, and ¢, are the adiabatic electronic basis functions
treatment of frustrated hops will be tested. We will refer tofor the ground state and excited state, respectively, gnd
the TFS variants as TF®rot-L, Prot-B, where Prot-L de- andc, are expansion coefficients that depend on the time
notes the protocol for linear-momentum-forbidden hops, and he electronic state population of statat timet is given by
Prot-E denotes the protocol for energy-forbidden hops. The

— 2
allowed values for Prot-L and Prot-E will be introduced and (D =[e (D% ®
defined as needed. The TFS probability of hopping from the occupied electronic
In recent work:9~%5 following an older protocof’ our  statek to the target stateis given by*°

group has used an implementation of the TFS method in by At
which momentum- and energy-forbidden hops are treated gk,zma><0, , 4
differently. When a trajectory experiences a linear- M
momentum-forbidden hop, the nuclear momentum along th&here
hopping vectoh is reversed, whereas when a trajectory ex- .

by = —2 Re(aR-d), 5

periences an energy-forbidden hop, the attempted hop is ig-
nored. We will refer to this method as the TES;+) At is the change in time between hopping cheaks,is the
method, where the " indicates that the nuclear momen- gjectronic state coherencge? , andR, is the velocity of the
tum is reversed alond, and the “+" indicates that the system on the occupied surfakeWhen a hop occurs, the
nuclear momentum is not reversed alohgIn assessing internal energy is adjusted along thevector, such that en-
whether this is the best procedure, we note that interstatgrgy is conserved, i.e., according to the following equation
coupling in the adiabatic representation is proportional to the
scalar product of the velocity of the trajectory addand Th(k)+ER)=Tn(D+E(), ©®
therefore it is independent of the components of the velocityvhere T,,(k) is the kinetic energy associated with the com-
orthogonal tod. We also note that it is the energy in the ponent of the nuclear linear momentum in thedirection
modes orthogonal ta that differentiates the two different when the trajectory is on surfageandE(Kk) is the potential
types of forbidden hops. These considerations motivate anergy of surfacé. As mentioned previously, a hopping at-
method that treats frustrated hops consistently. In particulatempt is frustrated if the energy of the occupied skaieless
along with the TFS—,+) method, we test two alternate than the energy of the target stdteand the kinetic energy
schemes, namely the TKS~+) and the TFS—,—) meth-  along h before the hopping attempt is less than the energy
ods. In the TFS—,—) method, all frustrated hops are re- gap between the two potential energy surfaces, i.e., if
flected alongh. The TFS¢(—,—) method was the method
used in the original implementation of the TFS metfbef Th(k)<E(1) = E(k). @)
In the TFS(+, +) method, all frustrated hops are ignored. A method called the MDQY method®?® has been pro-
The TFS¢+, +) method has also been suggested and testedosed for the case where Ed) is used, such that one uses
in the literature® a geometrically symmetrized spe€@S) to eliminate hop-
We have previously described a method for removingping attempts in regions where E@) is true. This method
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was justified® by noting that while a TFS classical trajectory Roed
exists on only one potential energy surface, a quantum me- FACA2(R, R/ d)=(}Ryd|+ YR,-d|) kK= (12
chanical wave function has some probability density on both |Rk-d|
electronic surfaces, and hence the magnitude of the velocity
that appears in the electronic dynamics through &9.is . .
replaced by a speed more representative of the motion o C(1/2), AS(1/2), and AQ1/2) methods defined in Eq9)—

both surfaces. We test this method along with seven variants. 2) weight the speed or co_upling of both syrfa_\ces equally. In
All eight methods eliminate frustrated hopping by rewriting general, the wave packet is not evenly distributed between

The symmetrized coupling equations for the (G9),

Eq. (5) as the two electronic states. In order to incorporate this into the
' dynamics we define the method QCJ by rewriting Eq.
) o 10) as
biy=—2 RealF (R R d)], ® 10

o o : : Rid
where the exact form ofF(Ry,R,,d) depends on the FECN) (R, R, ,d) = |Reed| ™| R, -d|1—

method. (Note thata,, is also a function ofR,-d, and Ryd

F(Ry,R,,d) is used in place oR,-d when calculatinga wheren, is the electronic state population of stateWith
for the eight new methods presented hete.the MDQT* this form of F¢¢("¥, the coupling terms that arise from each

(13

method, which we will also call the G&2) method, electronic surface are weighted according to their state popu-
lations n, instead of arbitrarily bys. We also test the
R.-d GS(n,), AS(n,), and AC(n,) methods which are defined by
G2 S L2 (12 K X X7 T X )
F (R, Ry, d) =R "R |o——, (9)  replacing the} weighting factors that appear in Eq8), (11),
Ry and(12), respectively, byn,, specifically:

where the velocity of the trajectory in the currently occupied o , . Ryd

electronic state i&®, . The value of R;| must be computed at FOSM(Ry, Ry, d) =Ry " Ry|"——, (14)
each time step, wherB, is the velocity that the trajectory Ri

would have if it were to hop to the other electronic surface. o _  Rud

Whenever a hopping attempt would be frustratBg,does FASIO(Ry Ry, d) = (R + M| R ) ——, (15
not exist, and®(Ry,R, ,d) is set to zero. All frustrated hops |Re

are eliminated in this method. The hopping probability does
not go smoothly to zero as hopping becomes frustrated be- FAC(R,,R, ,d)=(nk|Rk-d|+n|IR|-d|)
causeR, can have nonzero components orthogonatl tas |R-d|
hopping becomes frustrated.

We also note that in the GE2) method?>** the com-  |v.C. Absorbing frustrated hops
ponents of the velocity orthogonal @ contribute to the o _ . .
electronic dynamics. This might be considered unphysical It is interesting to calculate the reaction and quenching

since, as previously mentioned, these components do n&mbaﬁ'“t'is that V\(/jould_ be o_btamed by th_z LFS_ rr:]ert]hod if
couple the adiabatic electronic states in the original equatiof®MeNoW frustrated trajectories were provided with the nec-

for by, given in Eq.(5). An alternate prescription that elimi- essary energy to hop.. _We can obtain allower limit on the total
nates frustrated hopping with a smoothly vanishing hoppin onad|abat|c. probab|I|th by fea“a'yz'”g the Fiata from a
probability function is the geometrically symmetrized cou- FS c_alculatlon and using only those traject9r|es that d9_ r_10t
pling scheme, G(/2). In this formulation, experience a frustrated hop to calculate the final probabilities
and moments. This method can be thought of as the result
. obtained by absorbing trajectories with frustrated hops to the
FGC(l/Z)(Rk .R| ,d)=|Rk-d|1’2| R,-d|1’2 Ri-d _ (10) upper electronic state and is called the AFH result. This re-
' sult provides a lower limit on the TFS total nonadiabatic
probability Py because the possibility that some of the reas-
Using Eq.(10), the hopping probability goes smoothly to sSigned trajectories may hop back down to the lower state is
zero as hopping becomes frustrated. The(38 method notincluded. Note that the TFS-AFH method cannot be used
symmetrizes only the component of the velocity which isto compute the moments on the upper surface, but we do not
alongd; the components of the velocity orthogonaldalo  consider such moments in the present paper.
not contribute to the electronic dynamics, which is consistent
with Eq. (5).
For Cqmple_teness we also test the(A(B) "’_md ACIl/Z). IV.D. Semiclassical Ehrenfest method
methods, in which the speed or the coupling is arithmetically
symmetrized. Specifically, Although our main goal here is to determine the opti-
mum procedure for trajectory surface hopping calculations
o '  Rud when the surfaces are weakly coupled, we also carried out
FASU2(R, R, d)= (YR +YR[) ——, (11)  calculations using the semiclassical Ehrenfest ver$itiof
Ry| the time-dependent self-consistent-field method. The calcula-

'Rk°d

(16)

|Ry~d|
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TABLE |. Reaction, quenching, and total nonadiabatic transition probabilities, final vibrational and rotational moments, and product brénsHigthe
YRH(0.20 system and th€1.10, Q initial conditions.

Method P o) (i) P W) Q") Fr Py
Quantunt 0.010 0.83 12.4 0.047 0.90 3.35 0.176 0.057
Average quantuth 0.012 0.93 12.1 0.045 0.90 3.30 0.213 0.057
TFS{—,+) 0.034 0.77 13.1 0.068 0.47 5.57 0.333 0.102
TFS-AFH 0.007 0.81 13.9 0.020 0.35 7.92 0.256 0.027
TFS{+,+) 0.035 0.90 12.7 0.066 0.65 5.12 0.349 0.101
TFS{—,—) 0.027 0.81 12.7 0.073 0.45 5.77 0.272 0.101
TFS{R,+) 0.020 0.84 135 0.035 0.56 5.95 0.361 0.055
GS(1/2=MDQT* 0.057 0.85 13.1 0.109 0.62 5.67 0.342 0.166
GC(1/2) 0.097 0.95 12.3 0.165 0.66 5.41 0.369 0.262
AS(1/2) 0.133 0.97 12.2 0.234 0.66 5.22 0.362 0.367
AC(1/2) 0.062 0.86 13.0 0.116 0.65 5.14 0.349 0.178
Gs(n,) 0.038 0.87 12.8 0.067 0.62 5.74 0.359 0.105
GC(n,) 0.040 0.89 12.8 0.075 0.63 5.61 0.346 0.115
AS(n,) 0.040 0.86 12.9 0.070 0.59 6.03 0.364 0.110
AC(n,) 0.035 0.85 13.0 0.063 0.59 5.90 0.360 0.098
TFESA{—,+)-di 0.331 0.54 12.5 0.269 0.40 5.50 0.552 0.600
TFS-AFH-di 0.001 1.00 14.0 0.015 0.14 5.26 0.075 0.016

#uantum mechanical result for the scattering energy 1.10 eV.
PAverage of seven quantum mechanical calculations performed at the following scattering energies: 1.07, 1.08, 1.09, 1.10, 1.11, 1.12, and 1.13 eV.

tions show that the Ehrenfest method fails badly for thesevill help us to determine a reasonalfienot unique answer
systems, and this finding further motivates the present studyo the question of which method is the most accurate and to
The Ehrenfest results are discussed briefly in the appendixquantitatively compare the overall accuracy of several semi-
classical methods. First, unsigned errors were computed for
V. RESULTS each vibrational and rotational moment. The quenching prob-
) o abilities, reaction probabilities, and total nonadiabatic prob-
We tested all of the methods mentioned in this paper onypjjities vary by several orders of magnitude over the four
the YRH0.2) PEM at the(1.10, 0 set of initial conditions, yRH PEMs, and therefore the errors in these quantities were
and the results are summarized in Table I. We further testegyculated using logarithms, in particular the unsigned loga-
the TES¢—, +), TFS{+, +), TES{—, =), TFS{R, +), and  ithmic error in log, Py is given by
GC(n,) methods on all four of the YRH PEMs at each of the
three different sets of initial conditiond.10, 0, (1.10, 6, UE(logy px):||oglop§emi°'355ica'_ |oglopg(uama[, (17)
and (1.02, Q and on the set of three model MXH systems
(SB, SL, and WL for the (1.10, Q set of initial conditions. whereX=""R,” “ Q,” or “ N.” We also consider the error in
The detailed results of all of the semiclassical trajectory calthe reactive branching ratiég which is defined as the ratio
culations can be found in the supporting informattén. of the reaction probability?y to the total nonadiabatic prob-
Unless one single semiclassical method is best for alability Py . The unsigned errors for all of the semiclassical
observables for all cases, the choice of “best method” is notmethods discussed in this paper for the YRI20 PEM and
unique. Nevertheless, we will present some statistics thahe (1.10, Q set of initial conditions are shown in Table II.

TABLE II. Unsigned errors in the semiclassical methods for the YRBD system and th€1.10, Q initial conditions®

Method logoPr W'y 4" log;Pq W' (0] Fr 10g10PN OveralP
TFS{—,+) 0.45 0.16 0.99 0.18 0.43 2.27 0.12 0.25 0.62
TFS{+,+) 0.46 0.04 0.66 0.16 0.25 1.81 0.14 0.24 0.44
TFS{—,—) 0.35 0.12 0.61 0.21 0.45 2.47 0.06 0.24 0.52
TFS{R,+) 0.21 0.10 1.44 0.11 0.34 2.64 0.15 0.02 0.54
GS(1/2=MDQT* 0.67 0.08 1.01 0.38 0.28 2.37 0.13 0.46 0.64
GC(1/2) 0.90 0.01 0.22 0.56 0.24 211 0.16 0.66 0.61
AS(1/2) 0.71 0.08 0.95 0.41 0.25 1.84 0.14 0.49 0.64
AC(1/2) 1.04 0.03 0.07 0.71 0.24 1.91 0.15 0.81 0.68
GS(nX) 0.49 0.06 0.71 0.17 0.28 2.44 0.15 0.26 0.50
GC(n,) 0.51 0.05 0.75 0.22 0.27 2.30 0.13 0.30 0.50
AS(n,) 0.46 0.08 0.87 0.14 0.31 2.60 0.15 0.23 0.53
AC(n,) 0.52 0.07 0.81 0.19 0.31 2.73 0.15 0.28 0.55
TFS{—,+)-di 1.43 0.40 0.40 0.77 0.50 2.20 0.34 1.02 1.28

Numbers in bold indicate the method with the lowest error for each column. See text for a complete discussion.
bTo obtain the overall mean error, each column was normalized to have a mean value of 0.62, which is the average value of all unsigned errors in the table.
Then the eight columns for a given method were averaged.
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TABLE Ill. Mean unsigned errors in the semiclassical methods averaged over 12 YRH cases and three MXH cases.

System Method logPr W' G log;oPq ") am Fr 10g10Pn OveralP

YRH® TFS{—,+) 0.36 0.25 1.4 0.11 0.36 2.2 0.11 0.13 0.59
TFS{+,+) 0.36 0.15 1.3 0.10 0.22 1.9 0.11 0.11 0.47
TFS{—,—) 0.29 0.25 1.4 0.13 0.38 2.2 0.07 0.13 0.58
TFS{R,+) 0.30 0.15 1.5 0.13 0.25 2.1 0.13 0.09 0.51
GC(n,) 0.37 0.18 15 0.13 0.23 2.1 0.11 0.15 0.54

MXH TFS{—,+) 0.37 0.06 1.2 0.09 0.06 0.43 0.23 0.16 0.37
TFS{+,+) 0.37 0.07 11 0.06 0.06 0.39 0.23 0.16 0.35
TFS{—,—) 0.32 0.08 13 0.10 0.07 0.50 0.18 0.15 0.36
TFS{R,+) 0.37 0.06 1.3 0.16 0.05 0.60 0.27 0.12 0.42
GC(n,) 0.37 0.07 1.2 0.13 0.06 0.27 0.20 0.20 0.40

Numbers in bold indicate the method with the lowest error for each column. See text for a complete discussion.

bTo obtain the overall mean error, each column was normalized to have a mean value of 0.46, which is the average value of all unsigned errors in the table.
Then the eight columns for a given method were averaged.

‘Average of the 12 unsigned errors from all four YRH PE{@<20, 0.10, 0.03, and 0.DAt all three sets of initial conditions.

dAverage unsigned error from the three MXH PEK&BB, SL, and WL at the(1.10, Q set of initial conditions.

The method with the lowest unsigned error is listed in bold.MUE of one or more of the other methods, then each method
If another semiclassical method has an uncertainty that ovewith overlapping MUES is also listed in bold in Table III.
laps that of the best method, that method is also listed in  Table IV evaluates the semiclassical methods in a differ-
bold. ent way; in particular, it presents “scorecards” for the five
Mean unsigned error@MUES) were calculated for the semiclassical methods that we applied to all 15 cases. For
TFS{—, +), TFS{+, +), TFS{—, —), TFS{R, +), and each of the observables, a point is given to the method with
GC(n,) semiclassical methods for the YRH systems by av-the lowest absolute err¢or absolute error of the logarithms
eraging over the 12 cases studied hgoer YRH PEMs and  for the probabilities for each PEM and set of initial condi-
three sets of initial conditionsgnd are presented in Table IIl. tions. If the best method has an error with an uncertainty that
Table IV shows the MUEs for five semiclassical methods foroverlaps one or more of the other semiclassical methods,
the MXH systems, averaged over the three MXH PEMs. Ineach of the winning methods receives a point. Table V sum-
each column, the method with the smallest MUE is indicatednarizes the data in Tables Il and IV.
with bold font. By adding and subtracting the uncertainty of
the observable from the nominal values, we obtain an upper,
and a lower bound on the value of the observables. We c;\\él' DISCUSSION
then compute an upper bound on the MUEs by calculating The term “classically forbidden” can have a variety of
the MUE using either the upper or lower value of each ob-meanings in a technical sense, but it is nevertheless useful
servable, whichever results in the greatest error. A loweand easily understood as a label for certain kinds of events.
bound on the MUE can be calculated in a similar way. TakerConsider, e.g., the expansion of the electronic wave function
together, these values were used to determine if the metholl given in Eq.(2). At the start of the simulation, the system
with the lowest MUE is statistically different from the other is in a pure state, i.ec,(t=0) is a Kronecker deltag,,. It
methods. If the method with the lowest MUE has an uncerwould be reasonable to say that a hop down is classically
tainty in its MUE that overlaps with the uncertainty in the forbidden whenevelc,(t=%)|? is less thani. With this

TABLE IV. Scorecard for the semiclassical methods summed over 12 YRH tfasepotential energy matrices and three sets of initial conditiand three
MHX cases(three potential energy matrices and one set of initial conditions

System Method logPr W' ) log;oPq W' ) Fr 10g10Pn Probabilitie§ Moment§

YRH® TFS{—,+) 3 4 7 6 1 2 2 4 15 14
TFS{+,+) 1 9 11 6 8 8 0 7 14 36
TFS{—,—) 5 4 8 2 0 3 9 6 22 15
TFS{R,+) 9 9 7 8 5 5 0 8 25 26
GC(n,) 3 9 8 5 5 3 3 4 15 25

MXH¢ TFS{—,+) 0 3 2 0 1 1 0 0 0 7
TFS{+,+) 0 2 2 2 2 1 0 0 2 7
TFS{—,—) 2 2 1 0 1 0 2 0 4 4
TFS{R,+) 0 3 0 0 1 0 0 3 3 4
GC(n,) 1 2 1 1 1 3 2 0 4 7

aSum of the four probabilities columns.

bSum of four moments columns.

“Twelve cases: four YRH PEM&.20, 0.10, 0.03, and 0.DAt three sets of initial conditions.
9Three cases: MXH PEMESB, SL, and WI) at the(1.10, Q set of initial conditions.
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TABLE V. Overall summary including both YRH and MXH systems.

Normalized mean
Point$ unsigned errdr
Probabilities
TFS{—,+) 3.8 0.46
TFS{+,+) 55 0.43
TFS{—,—) 9.5 0.42
TFS{R,+) 9.2 0.48
GC(n,) 7.8 0.51
Moments
TFS{—,+) 10.5 0.50
TFS{+,+) 16.0 0.39
TFS{—,—) 7.8 0.52
TFS{R,+) 10.5 0.45
GC(n,) 13.2 0.43
Probabilities and moments 1074_I/ ]
TES{—,+) 14.3 0.48 0.01 0.03 0.10 0.20
TFS{+,+) 21.5 0.41 max
U, eV
TFS{—,-) 17.3 0.47 22 €
TFS(R+) 19.7 0.46 FIG. 3. Reaction and quenching probabilities for the four YRH PEMs and
GC(n,) 210 0.47 for the initial conditions(1.10, Q. The thick line represents the accurate

guantum mechanical results. The solid line with symbols and error bars
represents the TFG-,+) result. The dashed line with symbols and error
ars represents the TFS-AFH result, i.e., the results for absorbing frustrated
ops onto the upper surface. Note that both axes are logarithmic.

#From Table IV with YRH and MXH weighted equally, specificall%/.YRH
points + MXH points.

bFirst, each column in Table Ill was normalized to have an average value OE
0.46. Averages were then computed over the four probabilities, the four
moments, or all eight observables with the YRH and MXH surfaces
weighted equally.

tocol is not important to the discussion in this and the next
several paragraphs, and only the TFS-+) method will be

definition, electronic transitions are classically forbidden fordiscussed.We can explain the trend iRg andPq by noting
nearly every one of the more than 12 mil trajectories calcuthat in the 12 YRH cases studied here, 25%—-80% of the
lated for the YRH systems in the present study. In fact, les§FS{—, +) trajectories that finish the simulation on the
than 0.1% of trajectories for YR({8.20 and YRHO0.10 have lower electronic surface experience at least one frustrated
values of|c,(t==)|?>>3, and the maximum value dt,(t hopping attempt. Trajectories that experience frustrated hop-
=)|? is 0.12 and 0.10 for YRKD.03 and YRHO0.01), re-  ping attempts are trapped in the ground electronic state, lead-
spectively. One may therefore expect semiclassical methodsg to values ofPg and Pg that are greater than the value
to fail for systems with weakly coupled electronic states. Wedemanded by the fewest-switches algorithm. We can esti-
find, however, that the semiclassical methods tested here proiate a lower limit on the TFS transition probabilities by
vide reasonably accurate results, although the results awdnsidering only those trajectories that do not experience any
somewhat sensitive to the treatment of frustrated hops.  frustrated hops. This is accomplished by the TFS-AFH

The weakly coupled nature of the electronic states of thenethod. The TFS—, +) result, the TFS-AFH result, and the
YRH PEMs requires a large number of trajectories in ordeqquantum mechanical result for the reaction and quenching
to generate good statistics. The number of trajectories conprobabilities for theg1.10, 0 initial conditions are plotted in
puted for each simulation is included in the supportingFig. 3. For all four of the PEMs, the quantum mechanical
informatiorf? and varies from 5000 to 500 000. Each trajec-transition probabilities are bracketed by the TFS-+) and
tory takes about 1.2 s of computer time on an IBM SP su-TFS-AFH results. Fo1.10, § and (1.02, 0, this trend is
percomputer with 375 MHz Power 3 WinterHawkproces- observed for three of the four PEMs. The total nonadiabatic
sors, and it is worthwhile to note that for these weaklyprobability Py, which was defined above &x+Pgq, is
coupled systems, the fully converged quantum mechanicdiracketed by the TF&-, +) result and the TFS-AFH result
calculations(with our unique, highly optimized computer for all four PEMs in the YRH family and all three sets of
progran) are less expensive than some of the well convergedhitial conditions.
(with respect to the number of trajectoniegmiclassical tra- For the YRH systems, the likelihood that a trajectory
jectory methods. Nevertheless, trajectory methods remaiwill hop to the ground state twice is approximately equal to
more easily programmable and affordable for large system@,%,, which is in most cases negligible compared Rg .
where accurate quantum dynamics become prohibitive, so {Note that this is not true for the more strongly coupled
is important to test the reliability of the semiclassical meth-MXH systems where multiple hopping trajectories are an
ods. important part of the nonadiabatic dynamjcBherefore, for

The TFS¢—, +) method systematically overestimates weakly coupled systems, the TFS-AFH result is not merely a
the reaction and quenching probabilities for weakly coupledower limit on the TFS transition probabilities; the TFS-AFH
systems|[This is also true for the TF&-, —) and TFS¢+, result is approximately the result that would be obtained if
+) methods. However, the choice of the+" or “ —" pro- every frustrated hopping attempt called for by the TFS algo-
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rithm were allowed to occur. The fact that neither the TFS-rate values forPy than any of the TFSProt-L, Prot-B
(=, +) method nor the TFS-AFH method is accurate for themethods.
weakly coupled YRH systems maotivates the search reported It should also be noted that the symmetrized methods
in this paper for a modification to the TFS method that al-cannot be used in the diabatic representation because the
lows some frustrated hops and removesignore$ others.  diabatic coupling is not a function of the velocity of the
We note that the model YRH systems provide a dramaticlassical trajectory. We also note that the functions presented
example of the role that frustrated hopping plays in the senin Egs. (9)—(16) are not smooth functions, i.e., they have
sitivity of TSH calculations to the choice of electronic rep- discontinuous first derivatives. This arises from the fact that
resentation. As previously mentioned, all of the semiclassicaivhile the trajectory is traveling on a single electronic sur-
calculations reported in this paper were carried out in thdace, Eqs(9)—(16) are functions of the velocityor speedi of
adiabatic representation, except when noted otherwise. TH8€ trajectory on both electronic states. This speed for the
model YRHO0.20 system and the initial conditior(4.10, 0, unoccupied state does not correspond to a physical path of a
TFES{—, +) calculations carried out in the diabatic represen-trajectory traveling on the unoccupied electronic surface. For
tation [called the TFS—, +)-di method predict reaction €xample, if on the occupied surface the trajectory experi-
probabilities ten times greater and quenching probabilitie§€NCes a turning point in one of its modes, the velocity in that
four times greater than those predicted by the adiabatic TFgnode will decrease, pass through zero, and increase from
(—, +) calculations. We note that97% of trajectories that 2€ro with a different sign. The velocity computed for the
finish the simulation in the lower diabatic state experience atnoccupied surface will also switch signs, but it will not
least one frustrated hopping attempt, and that the quantuffecessarily go through zero, resulting in discontinuities in
mechanical reaction and quenching probabilitiesich are th(=T _velocny in that mode_ gnd its derlvatn/_e. These d|sco_nt|—
invariant to the choice of electronic representaicare pumes can .affect the efﬁqency of the.trajectory galculatlon
bracketed by the TFS-, +)-di and the TFS-AFH-di meth- if thg equations foak] are integrated with an algorithm that
ods, just as they are for the adiabatic results. We will nof€duires smooth derivatives.
discuss the diabatic calculations further. We will now turn our attention to the TF&-, +), TFS-

The symmetrized probability methods that weight the(™> ) TFS{=, =), and TFSR, +) methods. The treat-
surfaces by! significantly overestimate the reaction and ment of frustrated hops can have a significant effect on the

guenching probabilities for the weakly coupled model YRH]clnal Iogs\?lr?vgbles.t Thetheffe(f:t Ifh greater ftor tr;e Wea:d)(;
systems. We have previously discussed how frustrated ho oupie systems than for the more strongly couple
XH systems, where multiple hopping trajectories are im-

[ he TF + h i . .
?Ir?g Scax;eestritzee d mest'h,o ds) er;;ﬁ]tinc;(tjet?ruz\t/rﬁartisdmr?c?@i?\ b Ll;‘t)ortant. In general, the TFSF, +) method predicts the most
Y ppINng, accurate moments, the TRS-, —) method predicts the most

do so in a way that increases the probability of t_r_ansmons toaccurate values df, and the TFSR, +) method predicts
lower-energy states and decreases the probability of transj:
.the most accurate values By .

tions from lower-energy states to higher-energy state_s. This Reflecting the nuclear momentum alodgluring a frus-
canthbe dsebe,n frﬁlm qu@)—ElG)thor ?hny of Ithe jjym][nettr;]zed trated hop leads to increased error in the final moments and
Tn']lfs ?3 S’t I'i' ;V' . € gr(:: ((ajr an be I\E/a;e hkl or tﬁ decreased error in the product branching ratio. We can ex-
] { fot-L, Fro -E.me ods given by c( ) W enever the plain the trend inFg by noting that for the(1.10, 0 and
trajectory is in the higher-energy ele.ctronlc state, bl (1.02, 0 sets of initial conditions, the reaction probabilPy,
always be less thah,, when the trajectory is in the lower- for the TES(—, —) method is usually less thaP calculated

energy electronic state. _ by the TFS¢+, +) method, whereas the total nonadiabatic
The more physicain,-weighted methods have much .qpapility Py, is relatively unchanged. The upper electronic
lower errors in the probabilities than theveighted metholds. state in the reactive arrangement is energetically inacces-
For the YRH systems;; ~0 andn,~1, so the value ob,  gjple, leading to a large number of trajectories that experi-
is nearly equal tdoy, when the trajectory is in the higher- once energy forbidden hops as they are exiting this arrange-
energy electronic state. The valuelff is not equal tby  ment. In the TFS-+, +) method, these frustrated hops are
when the trajectory is in the lower-electronic state, but mulignored, and the trajectories finish in the reactive arrange-
tiple hopping trajectories are not important in determiningment. In the TFS—, —) method, trajectories with frustrated
the dynamics of the YRH systems. Therefore the valuepf  hopping attempts in this region are reflected in the direction
after a hop down to the lower-energy state is only importanif d, which has a large component parallel to the reactive
in determining whether or not the trajectory will experience achannel. This causes some trajectories to be reflected back
frustrated hop. In the,-weighted methods, frustrated hops into the interaction region, lowering the value B for the
are eliminated, which has the same effect on the final observFFS{—, —) method. For thg1.10, 6 set of initial condi-
ables as ignoring the frustrated hops, and nheweighted  tions, the increased energy in the rotational modes leads to
methods give similar results to the TES$; +) method. The an increased number of momentum-forbidden hops in the
total nonadiabatic probability is systematically slightly quenching product arrangement. These trajectories are re-
higher than the TF$+, +) method due to the considerations flected back into the interaction region in the TES; —)
discussed above for theweighted methods. Table Il shows method, lowering the value & relative to the TFS-+, +)
that the GC(,) method(which is, overall, the most accurate method. For all three sets of initial conditions, reflection of
of the symmetrized methods tested hepeedicts less accu- trajectories with frustrated hops back into the interaction re-
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gion improves the agreement of the semiclassical value gbrobabilities. Although there is no method that is the best
Fr with the quantum mechanical result. However, the reflecimethod for all observables, we see from Table V that, aver-
tion alongd also leads to increased errors in the final mo-aged over all observables, the TES; +) method is the

ments. most accurate of the semiclassical methods for modeling
It is reasonable, therefore, to consider methods that comweakly coupled systems, where classically forbidden hops
bine the “+” and the “—" protocols, such as the TF&-, are a serious problem.

+) method. We have previously mentioned, however, that

energy-forbidden and momentum-forbidden hops should b&Il. CONCLUSIONS
treated consistently. Our results indicate that the TFS+)
method is not the best strategy for combining the two reflec
tion protocols, and it leads to less accurate final moments a

the product branching ratios than either the THS-+)  5nq realistic. The systems are specifically designed to be

method or the TF$--, —) method. It should also be noted \yg4k)y coupled systems where the frustrated hopping prob-
that thed direction may not be the best direction in which t0 |gy is most serious: if one is to make a recommendation

reflect the nuclear momentum during a frustrated hoppingpout the best way to treat frustrated hopping, it is most

attempt when applying the=" protocol. appropriate to make that decision on the basis of studying
systems where the various choices have the most significant

We have presented fully converged quantum mechanical
Scattering calculations for four weakly coupled three-atom,
o-state systems. The systems are fully three-dimensional

We can draw a similar conclusion about the TRS-+)

method. The TFSR, +) method predicts the best values for jmpact on the results, i.e., systems where classically forbid-
the total nonadiabatic probabiliti?y. We can explain this e hops are an essential part of the problem.
for the YRH systems by observing that the quantum me- e tested the TFSTully’s fewest-switchessurface hop-
chanical data lie between the TKS; +) and the TFS-AFH  hing method with three different sets of initial conditions for
data, as shown in Fig. 3. The TRR; +) method allows & gach of the four YRH PEMs, as well as with one set of initial
subset of frustrated trajectorigeamely those trajectories ¢gnditions for a more strongly coupled set of three MXH
with - momentum-frustrated hopgo occur, improving the pgMs. We have shown that for weakly coupled systems, the
agreement of the semiclassical valuePpf with the quantum  TES method systematically overestimates the reaction and
mechanical result. We note, however, that because the profuenching probabilities due to the frequent occurrence of
ability of hopping to the ground state twice is small, thec|assically forbidden hopping attempts. We have explored
trajectories that hop to the upper electronic state using thgeveral variants of the TFS method which differ in their
rotatedd vector do not significantly affect the final reaction treatment of frustrated hoppmg and have shown that the
or quenching moments. In other systems where multiple hopreatment of frustrated hopping has a large effect on the final
ping trajectories are important, the rotated hopping vectohonadiabatic transition probabilities and the final vibrational
has a larger effect on the final moments, as observed in and rotational moments. The effect of frustrated hops was
previous stud} and in the present study for the rotational shown here to be critically important for the correct treat-
moments of the more strongly coupled MXH systems. ment of systems with weakly coupled electronic states, and
Although it would be desirable for Tables 1l1-V to show we know from previous wor¥'**and additional studies pre-
a clearly superior method, it is evident that a semiclassicaented here that the treatment of frustrated hops is also sig-
method that successfully solves the problem of classicallyificant for more strongly coupled systems.
forbidden hops must be more sophisticated than the simple The TFS¢(R, +) method is shown to predict the best
methods tested in this paper. We can, however, use the restal nonadiabatic probabilities. The TES; +) scheme,
sults of the present systematic study to suggest several imvhich ignores all types of frustrated hops, predicts the best
portant features that a method likely must have in order tdinal vibrational and rotational moments, and the TFS-—)
successfully treat frustrated hog$) Some, but not all, frus- method predicts the best product branching ratios. Averaged
trated trajectories should be reflecté?l Some, but not all, over all observables, the TRS-, +) method is the best of
frustrated hops should somehow be allowed to hop to théhe semiclassical methods tested here. Although there is no
upper electronic stat€3) The criterion for reflection and the method that completely solves the problem of classically
criterion for allowing classically forbidden hops should not frustrated hops, we have motivated the search for a more
be based on the partition of energy in modes orthogondJ to sophisticated protocol for the treatment of frustrated hops,
i.e., energy-forbidden and momentum-forbidden hops shouldnd we have inferred several features that a successful
be treated consistentl4) The use of symmetrized speed or method is likely to have.
coupling functions in the expression for the hopping prob-  We also tested eight symmetrized velocity and coupling
ability systematically leads to increased reaction and quenchmethods. These methods were shown to be extremely ill
ing probabilities and thereby to worse agreement with accusuited for modeling the dynamics of weakly coupled systems
rate calculations; hence these methods are not recommendachen the coupling contributions from both surfaces were
The choice of “best method” depends on the observableveighted equally. Weighting using the electronic state popu-
of interest, specifically: the TFG+, +) method performs lations significantly increased the accuracy of the method,
best when calculating the final vibrational and rotational mo-and the results of the best symmetrized method are only
ments, the TFS—, —) method gives the best value for the slightly less accurate, on the average, as those obtained using
reactive/nonreactive branching rafig,, and the TFSR, +)  the best nonsymmetrized coupling method. However, the
method gives the best electronically nonadiabatic transitiosymmetrized methods are specialized to the adiabatic repre-
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sentation, systematically increase the nonadiabatic transitiofABLE VI. Mean unsigned errors in the semiclassical methods for quench-

probabilities and can cause numerical difficulties in theil’ing and nonadiabatic probabilities for the four YRH systems and three sets
implementat’ion of initial conditions(12 cases

Although a major goal of this work was the comparison  Method logoPo (V") G 10,

of various strategies for dealing with the frustrated hoppin
9 g w A opp gTFS{—,+) 0.11 0.36 2.20 0.13
problem, we should not lose sigkin consideringrelative TES{++) 010 022 1.92 011
accuracy of the methogl®f an important conclusion about Trs(- ) 0.13 0.38 219 013
absoluteaccuracy of multidimensional semiclassical meth-TFS{(R,+) 0.13 0.25 2.14 0.09
ods in general for weakly coupled systems. This is the mos$E-H 1.12 0.03 179 121
extensive test ever carried ogsuperceding Ref. 33for ~ SE-LSS 013 0.86 089 0.17
SE-QSS 1.67 0.88 1.29 1.75

weakly coupled multidimensional semiclassical nonadiabatic
methods for three-body collisions in full three-dimensional®The Ehrenfest-histogram method does not predict any quenching for
space, featuring new quantum mechanical results and oveYRH(O.].Q, YRH(0.03), or YRH(0.01) at any of the initial conditions. The

: : : errors presented here are the average of the three initial conditions for the
12'rn|l trajectories. Thg acc.urate quantal values of the prob YRH(0.20 system.
ability Py of a nonadiabatic evenfaveraged over energy

intervals of 0.06 eYrange from 3< 10 °to 1x 10, or, on

a logarithmic scale, logPy ranges from-4.5t0 —1.0. And  {he gquenching probability. This method has errors compa-
yet the five semchaSS|_caI methods t_hat were applied to all 12,10 1o the TFS methods for the quenching and total nona-
cases have mean unsigned errors indBg that range from  giahatic probabilities and the final moments. The SE-QSS

0.09 to O.15(cor(espopding to typical errors of only about method assigns a weight nf to the quenching probability if
30%). Thus semiclassical methods are remarkably accuratﬁ1<r|2 (which is usually the casend a weight of 1—n§ if

e\r/fn in these highly non;:lassg:al vvfea;]kly c?uple? Systems, ~n, . The results of the SE-QSS method are intermediate
T 'IIS provides ?trr?ng con gmatlon o t Ie va lf,e 0 paﬁt_de—of the SE-LSS and the SE-H methods. Table VI gives MUEs
tailed stgdlgs of these met ods,'and |t'a so validates t' €ir US the semiclassical Ehrenfest methods.
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